Copied to
clipboard

G = C3×C4.9C42order 192 = 26·3

Direct product of C3 and C4.9C42

direct product, metabelian, nilpotent (class 2), monomial, 2-elementary

Aliases: C3×C4.9C42, C423C12, C12.32C42, (C4×C12)⋊4C4, (C2×C8)⋊1C12, (C2×C24)⋊3C4, C4.9(C4×C12), C12.50(C4⋊C4), (C2×C12).36Q8, C23.8(C3×D4), (C2×C12).277D4, (C22×C6).27D4, C42⋊C2.1C6, (C2×M4(2)).4C6, (C6×M4(2)).16C2, C12.101(C22⋊C4), C6.21(C2.C42), (C22×C12).386C22, C4.1(C3×C4⋊C4), (C2×C4).8(C3×D4), (C2×C4).1(C3×Q8), C22.1(C3×C4⋊C4), (C2×C6).18(C4⋊C4), (C2×C4).63(C2×C12), C4.17(C3×C22⋊C4), (C2×C12).324(C2×C4), (C22×C4).21(C2×C6), C22.7(C3×C22⋊C4), (C2×C6).70(C22⋊C4), C2.2(C3×C2.C42), (C3×C42⋊C2).15C2, SmallGroup(192,143)

Series: Derived Chief Lower central Upper central

C1C4 — C3×C4.9C42
C1C2C22C23C22×C4C22×C12C3×C42⋊C2 — C3×C4.9C42
C1C4 — C3×C4.9C42
C1C12 — C3×C4.9C42

Generators and relations for C3×C4.9C42
 G = < a,b,c,d | a3=b4=c4=d4=1, ab=ba, ac=ca, ad=da, dcd-1=bc=cb, bd=db >

Subgroups: 154 in 94 conjugacy classes, 54 normal (22 characteristic)
C1, C2, C2, C3, C4, C4, C4, C22, C22, C22, C6, C6, C8, C2×C4, C2×C4, C2×C4, C23, C12, C12, C12, C2×C6, C2×C6, C2×C6, C42, C22⋊C4, C4⋊C4, C2×C8, M4(2), C22×C4, C24, C2×C12, C2×C12, C2×C12, C22×C6, C42⋊C2, C2×M4(2), C4×C12, C3×C22⋊C4, C3×C4⋊C4, C2×C24, C3×M4(2), C22×C12, C4.9C42, C3×C42⋊C2, C6×M4(2), C3×C4.9C42
Quotients: C1, C2, C3, C4, C22, C6, C2×C4, D4, Q8, C12, C2×C6, C42, C22⋊C4, C4⋊C4, C2×C12, C3×D4, C3×Q8, C2.C42, C4×C12, C3×C22⋊C4, C3×C4⋊C4, C4.9C42, C3×C2.C42, C3×C4.9C42

Smallest permutation representation of C3×C4.9C42
On 48 points
Generators in S48
(1 24 16)(2 21 13)(3 22 14)(4 23 15)(5 43 35)(6 44 36)(7 41 33)(8 42 34)(9 25 17)(10 26 18)(11 27 19)(12 28 20)(29 45 37)(30 46 38)(31 47 39)(32 48 40)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)
(1 35 11 32)(2 36 12 29)(3 33 9 30)(4 34 10 31)(5 27 48 24)(6 28 45 21)(7 25 46 22)(8 26 47 23)(13 44 20 37)(14 41 17 38)(15 42 18 39)(16 43 19 40)
(5 8 7 6)(9 11)(10 12)(17 19)(18 20)(25 27)(26 28)(29 30 31 32)(33 36 35 34)(37 38 39 40)(41 44 43 42)(45 46 47 48)

G:=sub<Sym(48)| (1,24,16)(2,21,13)(3,22,14)(4,23,15)(5,43,35)(6,44,36)(7,41,33)(8,42,34)(9,25,17)(10,26,18)(11,27,19)(12,28,20)(29,45,37)(30,46,38)(31,47,39)(32,48,40), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,35,11,32)(2,36,12,29)(3,33,9,30)(4,34,10,31)(5,27,48,24)(6,28,45,21)(7,25,46,22)(8,26,47,23)(13,44,20,37)(14,41,17,38)(15,42,18,39)(16,43,19,40), (5,8,7,6)(9,11)(10,12)(17,19)(18,20)(25,27)(26,28)(29,30,31,32)(33,36,35,34)(37,38,39,40)(41,44,43,42)(45,46,47,48)>;

G:=Group( (1,24,16)(2,21,13)(3,22,14)(4,23,15)(5,43,35)(6,44,36)(7,41,33)(8,42,34)(9,25,17)(10,26,18)(11,27,19)(12,28,20)(29,45,37)(30,46,38)(31,47,39)(32,48,40), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48), (1,35,11,32)(2,36,12,29)(3,33,9,30)(4,34,10,31)(5,27,48,24)(6,28,45,21)(7,25,46,22)(8,26,47,23)(13,44,20,37)(14,41,17,38)(15,42,18,39)(16,43,19,40), (5,8,7,6)(9,11)(10,12)(17,19)(18,20)(25,27)(26,28)(29,30,31,32)(33,36,35,34)(37,38,39,40)(41,44,43,42)(45,46,47,48) );

G=PermutationGroup([[(1,24,16),(2,21,13),(3,22,14),(4,23,15),(5,43,35),(6,44,36),(7,41,33),(8,42,34),(9,25,17),(10,26,18),(11,27,19),(12,28,20),(29,45,37),(30,46,38),(31,47,39),(32,48,40)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48)], [(1,35,11,32),(2,36,12,29),(3,33,9,30),(4,34,10,31),(5,27,48,24),(6,28,45,21),(7,25,46,22),(8,26,47,23),(13,44,20,37),(14,41,17,38),(15,42,18,39),(16,43,19,40)], [(5,8,7,6),(9,11),(10,12),(17,19),(18,20),(25,27),(26,28),(29,30,31,32),(33,36,35,34),(37,38,39,40),(41,44,43,42),(45,46,47,48)]])

66 conjugacy classes

class 1 2A2B2C2D3A3B4A4B4C4D4E4F···4M6A6B6C···6H8A8B8C8D12A12B12C12D12E···12J12K···12Z24A···24H
order1222233444444···4666···688881212121212···1212···1224···24
size1122211112224···4112···2444411112···24···44···4

66 irreducible representations

dim111111111122222244
type++++-+
imageC1C2C2C3C4C4C6C6C12C12D4Q8D4C3×D4C3×Q8C3×D4C4.9C42C3×C4.9C42
kernelC3×C4.9C42C3×C42⋊C2C6×M4(2)C4.9C42C4×C12C2×C24C42⋊C2C2×M4(2)C42C2×C8C2×C12C2×C12C22×C6C2×C4C2×C4C23C3C1
# reps1212844216821142224

Matrix representation of C3×C4.9C42 in GL4(𝔽73) generated by

8000
0800
0080
0008
,
46000
04600
00460
00046
,
27010
46000
1100
710046
,
10014
072013
004646
00027
G:=sub<GL(4,GF(73))| [8,0,0,0,0,8,0,0,0,0,8,0,0,0,0,8],[46,0,0,0,0,46,0,0,0,0,46,0,0,0,0,46],[27,46,1,71,0,0,1,0,1,0,0,0,0,0,0,46],[1,0,0,0,0,72,0,0,0,0,46,0,14,13,46,27] >;

C3×C4.9C42 in GAP, Magma, Sage, TeX

C_3\times C_4._9C_4^2
% in TeX

G:=Group("C3xC4.9C4^2");
// GroupNames label

G:=SmallGroup(192,143);
// by ID

G=gap.SmallGroup(192,143);
# by ID

G:=PCGroup([7,-2,-2,-3,-2,-2,-2,-2,168,197,344,248,2111,6053]);
// Polycyclic

G:=Group<a,b,c,d|a^3=b^4=c^4=d^4=1,a*b=b*a,a*c=c*a,a*d=d*a,d*c*d^-1=b*c=c*b,b*d=d*b>;
// generators/relations

׿
×
𝔽